Search results for "Closed monoidal category"

showing 1 items of 1 documents

OPERADS AND JET MODULES

2005

Let $A$ be an algebra over an operad in a cocomplete closed symmetric monoidal category. We study the category of $A$-modules. We define certain symmetric product functors of such modules generalising the tensor product of modules over commutative algebras, which we use to define the notion of a jet module. This in turn generalises the notion of a jet module over a module over a classical commutative algebra. We are able to define Atiyah classes (i.e. obstructions to the existence of connections) in this generalised context. We use certain model structures on the category of $A$-modules to study the properties of these Atiyah classes. The purpose of the paper is not to present any really de…

14F10Pure mathematicsFunctorPhysics and Astronomy (miscellaneous)Quantum algebraSymmetric monoidal category18G55Mathematics::Algebraic TopologyClosed monoidal categoryAlgebraMathematics - Algebraic GeometryTensor productMathematics::K-Theory and Homology18D50Mathematics::Category TheoryMathematics - Quantum AlgebraFOS: Mathematics18D50; 18G55; 13N15; 14F10Quantum Algebra (math.QA)Tensor product of modulesCommutative algebraAlgebraic Geometry (math.AG)Commutative property13N15MathematicsInternational Journal of Geometric Methods in Modern Physics
researchProduct